Year 5 Programme of Study
Mathematics Mastery is fully aligned to the National Curriculum. Our Programmes of Study outline the objectives taught throughout the year in Mathematics Mastery lessons*.
*Some National Curriculum objectives are also further embedded during Maths Meetings, see Maths Meeting termly guidance here.

	1. Reasoning with large whole numbers (2 weeks)	- read, write, order and compare numbers to at least 1000000 and determine the value of each digit - count forwards or backwards in steps of powers of 10 for any given number up to 1000000 - round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000 - solve number problems and practical problems that involve all of the above - read Roman numerals to $1000(\mathrm{M})$ and recognise years written in Roman numerals
	2. Problem solving with integer addition and subtraction (2 weeks)	- add and subtract numbers mentally with increasingly large numbers - add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
	3. Line graphs and timetables (2 weeks)	- solve comparison, sum and difference problems using information presented in a line graph - complete, read and interpret information in tables, including timetables - solve problems involving converting between units of time
	4. Multiplication and division (3 weeks)	- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - recognise and use square numbers and the notation for squared (${ }^{2}$) - know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply and divide whole numbers by 10,100 and 1000 - multiply and divide numbers mentally drawing upon known facts - solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - multiply numbers up to 4 digits by a one- or two-digit number using a formal written method - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
	5. Perimeter and area (1 week)	- measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres - calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres (m^{2}) and estimate the area of non-rectilinear shapes

Year 5 Programme of Study

盛	6. Fractions and decimals (3 weeks)	- compare and order fractions whose denominators are all multiples of the same number - recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents - recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}$] - identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths - read and write decimal numbers as fractions [for example, $0.71=\frac{71}{100}$] - round decimals with two decimal places to the nearest whole number and to one decimal place - read, write, order and compare numbers with up to three decimal places
	7. Angles (2 weeks)	- know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles - draw given angles, and measure them in degrees (${ }^{\circ}$) - identify: angles at a point and one whole turn (total 360°); angles at a point on a straight line and $\frac{1}{2}$ a turn (total 180°); other multiples of 90°
	8. Fractions, decimals and percentages (3 weeks)	- add and subtract fractions with the same denominator and denominators that are multiples of the same number - multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates - recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal - solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and fraction and decimal equivalents of percentages that are multiples of 10 and 25 - solve problems involving number up to three decimal places - use all four operations to solve problems involving measure (for example length, mass, volume, money) using decimal notation, including scaling
	9. Transformations (2 weeks)	- identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed - use the properties of rectangles to deduce related facts and find missing lengths and angles - describe positions on the full coordinate grid (all four quadrants) (Y6 objective) - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero (through coordinates context)

$\begin{aligned} & \text { d } \\ & \text { g } \\ & \text { g } \\ & \text { ひٌ } \end{aligned}$	10. Converting units of measure (2 week)	- convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram) - multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000 - understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints
	11. Calculating with whole numbers and decimals (3 weeks)	- use all four operations to solve problems involving measure (for example length, mass, volume, money) using decimal notation, including scaling - solve problems involving number up to three decimal places - multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers - multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000
	12. 2-D and 3-D shape (2 weeks)	- distinguish between regular and irregular polygons based on reasoning about equal sides and angles - use the properties of rectangles to deduce related facts and find missing lengths and angles - identify 3-D shapes, including cubes and other cuboids, from 2-D representations - recognise, describe and build simple 3-D shapes, including making nets (Y6 objective) - illustrate and name parts of circles, including radius, diameter and circumference and know that diameter is twice the radius. (Y6 objective)
	13. Volume (1 week)	- estimate volume [for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [for example, using water] - recognise and use cube numbers and the notation for cubed $\left({ }^{3}\right)$
	14. Problem solving (2 weeks)	- interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (for example, $98 \div 4=498=24 \mathrm{r} 2=2421=24.5 \approx$ 25). (Non-statutory) - calculate and interpret the mean as an average (Y6 objective)

